UFM 07: a future step in train-borne track recording.

taking the lead by measuring

- Refitting ICE-1 for ETCS Level 2
- New track-bed system durflex
- Interlocking installation in Lötschberg base tunnel
- Plug and play system for urban regional-express train
Contents

RTR 2/2008

Editorial .. 3

The bridge over the Rhine between Strasbourg and Kehl – a cross-border challenge 6
Dipl.-Ing. Matthias Mlotog
Nicholas Statkiewicz

The Thales Elektra electronic interlocking installation in the Lütschberg base tunnel 11
Dipl.-Ing. Walter Fuß

Installation quality of slab track – a decisive factor for maintenance 16
Dipl.-Ing. Dr. Rudolf Schieder
Dipl.-Ing. Dirk Diederich

Maintenance of the railway line through the new Lütschberg base tunnel 21
Hans Stradelmann
Walter Bléri
Eduard Wymann

Durflex – a new track-bed system 29
Dipl.-Ing. Jürgen Frenzel
MBA Jörg Frenzel

Refitting ICE 1 end power cars for ETCS Level 2 in Switzerland 34
Dr.-Ing. Hendrik Funken

“PLUG”-and-play connector system for the world’s longest articulated urban regional-express train 38
Dipl.-Ing. Gerd Albrecht
Dipl.-Ing. Henrik Massmann

Briefly from Around the World:

Why a revised Eurovettore Directive is necessary p. 43
Plattformberg Marseille p. 43
Acquisition of Rotterdam Rail Funding p. 44
Required for planning assessment withdrawn p. 44
Cross-acceptance p. 44
Drivers' meter with distributed controls p. 44
Sanctions to supply 30% Demand Mills p. 45
New professor for sponsored chair p. 45
Locomotives for the Betuweroute p. 45
More freight by rail p. 45
Acquisition of DB in Germany p. 46
Call for tenders to operate the electrified passenger network in Transavia p. 46
Durflex – a new track-bed system

Durflex is a new system for constructing track beds. It reduces operating costs and emissions, without introducing any fundamentally different or novel railway technologies.

1 Introduction

Noise (including structure-borne noise) is increasingly becoming a problem for the railway on account of statutory requirements, and noise barriers (particularly in residential districts) can be considered as no more than a partial solution. Against this background, the new track-bed system presented here is pursuing the objective of optimizing ballasted track. This is one way of tackling the problem of noise and structure-borne emissions at source and also of bringing down the operating costs and lifecycle costs of the railway tracks.

The traditional track systems that are still used most frequently worldwide today include ballasted tracks, in combination with either timber, concrete or steel sleepers. With these track types, however, the bed of ballast does not have a rigid particle structure. Ballast has no problem with the static element when it comes to dispersing the loads induced by passing trains, but the dynamic loading, that trains also cause, leads to noise emissions and vibrations. Changes in the particle structure of the ballast are the result. The ballast's sharp edges become blunt and, gradually, it is completely rearranged. That is why ballast needs to be tamped and put back into shape every four to six years, which are further operations that also cause noise, vibrations, interruptions to railway services and costs and which eventually lead to the final destruction of the ballast.

All this explains why there was such great interest when the research partnership of Frenzel-Bau, Bayer MaterialScience and Hennecke presented Durflex, its innovative track-bed system, to the general public for the first time at the start of April 2007. To begin with, this system was only applied to a short test section of track, with the main aim of testing and optimizing the machines and materials before the system was inserted into the chosen pilot section of track between Hamburg and Hanover in June 2007.

The conventional stages of track replacement on the test section near Uelzen were carried out by the Schweerbau company as part of a planned renewal project and were completed without any sort of problem. The work done by Schweerbau involved:

- removal of the old track,
- removal of the old ballast and the substructure,
- insertion of the new substructure,
- insertion of the new drainage mats,
- distribution of the new ballast, and
- tamping and compaction of the new track.

After that, the new track was formally accepted.

It is important to stress at this stage that the whole sequence of operations up to acceptance of the track can be carried out:

- using familiar construction methods, and
- with mechanized techniques already very widely available.

There are thus no problems with migrating to new technologies, and the time required for all the named operations remains within the established orders of magnitude.

Once the track has been accepted, there now comes a new step – the insertion of foam into that part of the ballast intended to dissipate loads. The material used is a PU foam called Bayflex. The planning aim is to have this phase of work fit 1:1 with...
Durflex – a new track-bed system

Under the load of a passing train, the ballast/foam system yields and, once the train has gone by, it returns to its original position. The individual ballast stones are not rearranged, but keep their initial position for a long time, thereby eliminating the need for corrective tamping and also extending the service life of the track. A further advantage is that a faulty lie of the track is less likely to evolve, which, in turn, leads to fewer breakages of sleepers or rails. On the whole, Durflex achieves a significant improvement in the availability of the railway network and its efficiency.

The Durflex track-bed system could be described as the first "quasi-slab" one that very significantly reduces both structure and air-borne noise. Further, it needs only a very short time to produce it, the production process is economical, and it can be operated with little maintenance. Another of Durflex's advantages is that the system can be inserted in either new track beds or existing ones.

2 System structure

Durflex is a track-bed system in which the cavities between the ballast stones in the load-dispersing zones are completely filled with flexible Bayflex foam. The formulation is poured between the ballast stones in liquid form (Fig. 1). This liquid then reacts to form an elastic foam, which expands to occupy a multiple of its original volume and elastically fills the cavities in a durable manner (Fig. 2). In addition, a rubber drainage mat needs to be inserted under the ballast and this acts as both an insulating and separating element (Fig. 3).

Working on the knowledge accumulated from the numerous series of tests during the development work, a high-pressure applicator machine from Hennecke, which was modified specifically for this project, was installed in a railway container provided by Deutsche Bahn (Fig. 4).

This machine is fed with the appropriate PU components directly from large tanks. The chosen mixing head for these PU components is one with a three-way deflector (Figs. 5 to 7). The three-way deflector achieves an optimum mixing of the raw material prior to its injection into the ballast. A Wintronic control module was enhanced and adapted specifically for the project. This control unit sets the formulation for online batch production – which means that it is possible to influence the starting time for the reaction between the liquid Bayflex input materials. This facilitates ensuring that different
types of ballast bed are completely filled with foam. In addition, this control module is able to manage and record the amount of foam applied per sleeper.

3 Practical test

In June 2007, a 330-metre-long test section of track filled with Durflex foam (as just described) was created on the main railway line between Hamburg and Hanover in Lower Saxony. This line carries mixed traffic, including heavy freight trains (with axle loads of up to 25 tonnes) and fast passenger trains (with top speeds of up to 200 km/h, Fig. 8). All those involved in the project expected a confirmation under practical conditions of the very good preliminary results obtained in the laboratory as regards stability and the reduction in air and structure-borne noise. That is indeed what happened.

Today, after more than 30 million tonnes of loads have passed over this test section of track, the situation is as follows:

- The track bed is in a very good condition;
- The emission of vibrations has been reduced by approximately 40%;
- The lateral resistance is eight times higher than for a normal ballasted track, and
- Air-borne noise has been reduced by at least 2 db.

4 Concluding summary

Contrary to an opinion frequently voiced, the technology of railway tracks resting on a bed of ballast is not one that has reached the end of its development potential.

The Durflex trackbed system today already satisfies all the requirements of an efficient, modern means for laying track, without causing any incompatible technical departure from existing systems. It does not in any way impair the safety of people, goods and the environment. In its approach to the further development of ballasted track, Durflex offers an alternative to slab track in several highly interesting aspects.

The fact that the EBA (Eisenbahn-Bundesamt, German Federal Railway Authority) gave its approval for a test on a railway line carrying mixed traffic and with top speeds of 200 km/h shows clearly that the tests performed and the evidence produced (but especially the very idea underlying the track-bed system) have led to that authority being convinced.

The dependability of positional stability has been demonstrated in a long-term (single-
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ballasted track</th>
<th>Durflex®</th>
<th>Slab track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laying time</td>
<td>Short</td>
<td>Slightly longer than for ballasted track on account of the extra time needed for the foaming process; no curing time required</td>
<td>Long, very long setting times for concrete</td>
</tr>
<tr>
<td>Repair concept</td>
<td>No problem</td>
<td>No problem</td>
<td>Time-consuming</td>
</tr>
<tr>
<td>Special engineering procedures</td>
<td>None</td>
<td>None</td>
<td>Numerous, for points, bridges and inserts. EBA approvals required</td>
</tr>
<tr>
<td>Flying ballast in tunnels</td>
<td>Problematical</td>
<td>None if the entire track bed is filled with foam</td>
<td>No ballast</td>
</tr>
<tr>
<td>Recycling</td>
<td>No problem</td>
<td>No problem</td>
<td>Labour-intensive</td>
</tr>
<tr>
<td>Costs of site security / supervision of works</td>
<td>Low</td>
<td>Only marginally higher than for ballasted tracks</td>
<td>Very high on account of the long time needed for completing the track</td>
</tr>
<tr>
<td>Outlay on surveying</td>
<td>Low</td>
<td>Low</td>
<td>Very high</td>
</tr>
<tr>
<td>Lateral resistance</td>
<td>Low</td>
<td>Very high</td>
<td>Very high</td>
</tr>
<tr>
<td>Ballast application beyond the ends of the sleepers</td>
<td>≥ 40 cm</td>
<td>≥ 25 cm thanks to the high lateral resistance</td>
<td>Not necessary</td>
</tr>
<tr>
<td>Compressive stress on the track formation</td>
<td>Very high</td>
<td>Low, possibility of doing with a Sublayer</td>
<td>Low</td>
</tr>
<tr>
<td>Thickness of track bed</td>
<td>30 cm / 35 cm</td>
<td>Reduction possible thanks to better load distribution (must be calculated first)</td>
<td>Overall structural height higher than for ballast or Durflex</td>
</tr>
<tr>
<td>Thickness of load-bearing layers</td>
<td>30-50 cm</td>
<td></td>
<td>Depends on the particular system</td>
</tr>
<tr>
<td>Stress under sleeper</td>
<td>High</td>
<td>Significantly lower, possibility of laying shorter sleepers with a smaller contact surface (must be calculated first)</td>
<td></td>
</tr>
<tr>
<td>Filter stability at interface with soils having similar grain structures</td>
<td>No, only achievable with special measures (such as insertion of a sublayer)</td>
<td>Yes, no special measures required if subsoil has adequate load-bearing properties</td>
<td>Always requires special load-bearing layers as a foundation, expensive and time-consuming</td>
</tr>
<tr>
<td>Quantity of ballast</td>
<td>Large</td>
<td>Less, since less ballast is needed beyond the ends of the sleepers and depth of bed is also less</td>
<td></td>
</tr>
<tr>
<td>Width of the ballast bed</td>
<td>Large</td>
<td>Narrower, since less ballast is required</td>
<td>Concrete slab, less width required</td>
</tr>
<tr>
<td>Heat-insulation effect of the ballast</td>
<td>Low</td>
<td>High, no need for frost-protection layers (provided this is documented)</td>
<td></td>
</tr>
<tr>
<td>Settlement</td>
<td>Considerable, in both the ballast and the substructure</td>
<td>None, or at most in the substructure only</td>
<td>None</td>
</tr>
<tr>
<td>Noise emission</td>
<td>High</td>
<td>Low, possible to do without noise barriers</td>
<td>Very high, hard reflection surfaces</td>
</tr>
<tr>
<td>Possibility of retrofitting cable ducts in the side path</td>
<td>Usually only possible if the track formation is widened, for instance by enlarging an embankment or by erecting supporting structures; acquisition of land may be necessary.</td>
<td>Possible without any additional measures given the narrower width of the track bed (installation of electronic interlocking systems)</td>
<td>Planning procedures and approvals absolutely essential</td>
</tr>
<tr>
<td>Vibrations in the substructure</td>
<td>High</td>
<td>Very low and it may thus be possible to do with protective measures for the substructure</td>
<td>High</td>
</tr>
<tr>
<td>Planning permission required for conversion work</td>
<td>No</td>
<td>No, since only additional quantities of environmentally-compatible building materials are used (cf. BEVAR report)</td>
<td>Planning procedures and approvals absolutely essential</td>
</tr>
<tr>
<td>Vibrations</td>
<td>High</td>
<td>Low, low-cost installation on bridges</td>
<td>High</td>
</tr>
<tr>
<td>Risk of pollutants contaminating the track bed</td>
<td>Possible</td>
<td>Generally impossible</td>
<td></td>
</tr>
<tr>
<td>Development of cavities</td>
<td>Very problematic</td>
<td>None</td>
<td>Rigid system, problems at transitions</td>
</tr>
<tr>
<td>Reaction to temperature effects</td>
<td>Track buckling possible</td>
<td>Track buckling impossible</td>
<td>Large temperature stresses built into the system, impact on service life</td>
</tr>
<tr>
<td>Conversion of the track bed to alternative systems</td>
<td>-</td>
<td>Can be done very quickly with the existing large machines</td>
<td>Very costly and time-consuming, long track closures, high additional operating costs, need to make extensive adjustments to timetables</td>
</tr>
</tbody>
</table>

Table 1: Comparison: ballasted track, Durflex® and Slab track
sleeper test at the MPA Braunschweig. In this test, the maximum elastic deformation measured on the sleeper next to the rail was 0.3 mm. Moreover, there was no evident sign of material fatigue or material damage after five million load cycles.

There were calls for tests to be carried out into the durability of the track-bed system. They took the form of freezing-and-thawing cycles and also tests of the system’s behaviour in embankment and liquid fires and were performed at the MPA Braunschweig. The first of these were carried out with a cycle rate of 25, determined by the EBA and simulated a temperature difference of 40 Kelvin. The test piece showed no changes worth mentioning as a result of these particular tests. The tests with the embankment and liquid fires led to the conclusion that no damage, no other changes and no propagation of the fire were to be expected. The target set for safety, durability and protection of the environment has thus been attained.

5 Prospects

The further development of the Durflex track-bed system ought to continue in the light of the good results obtained with it so far. The work still to be done includes:

- optimizing the individual components,
- possibly changing the sleeper material from concrete to plastic,
- determining the oscillation components in the system scientifically,
- investigating surface bonding with a view to reducing the amount of fine dust blown up by turbulence,
- developing a lower noise barrier to be installed close to the track, and
- optimizing the ballast grading line.